Battery Sensing Solutions with NGK for 1-Cell Rechargeable Li-ion/LiPo Battery

Oct. 2022

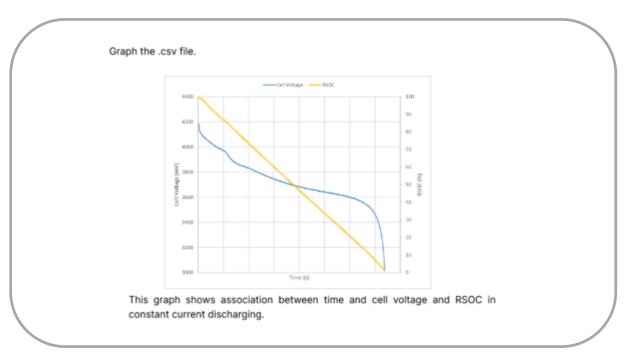
onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries, onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Consumer for its reliance on this information and is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided, including information contained in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts, onsemi does not convey any license under any of its intellectual property rights nor the rights of others, onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should you purchase or use onsemi products for any such unintended or unauthorized application, you shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part, onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

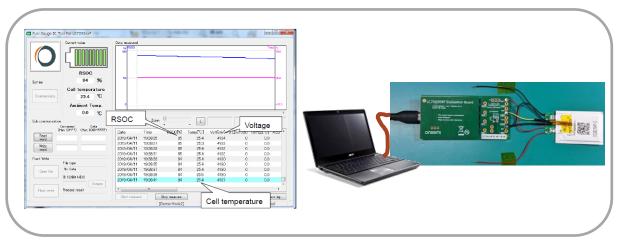
Support from NGK INSULATORS & onsemi

"Solutions from NGK & onsemi"

Provide qualified parameter/data in advance

- 1) Save time for qualifications
- 2) Reduce risks for replacement

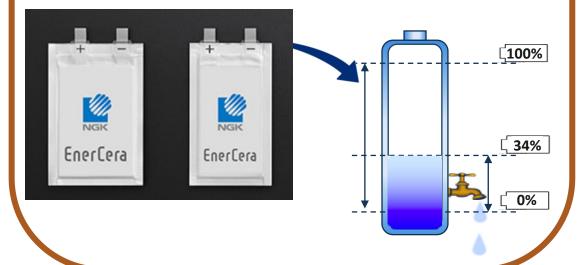

* EnerCera is a products of NGK Insulators, Ltd. *NGK EnerCera Lithiumion battery image (used with permission from NGK Insulators, Ltd.)


Public Information © onsemi 2022

Support from NGK INSULATORS & onsemi

Support for Customers

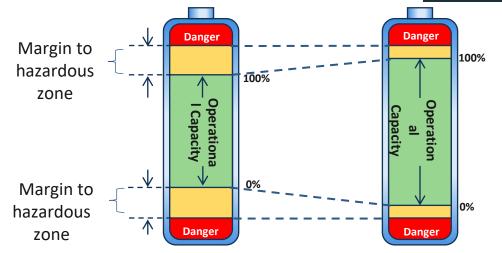
- Provide matching data with *NGK EnerCera battery & onsemi Fuel Gauge IC which reduces qualification process
- Tool can make it easier to qualify low power operation
- *NGK EnerCera & onsemi solutions contribute physically small size system
- * EnerCera is a product of NGK Insulators, Ltd.


© onsemi 2022

Requirements and Role of Battery sensing solutions

Requirements from power system

- High safety
- Long operating time


*NGK EnerCera Lithium-ion battery image (used with permission from NGK Insulators, Ltd.)

Role of the Battery sensing solution

- Keep system safety
- Support efficient energy use

The function of Battery sensing

- Fuel gauge supports base report as RSOC
- Indicates status of battery voltage, temperature, and health

onsemi Battery Sensing solution features

Accurate Gauging

Robust gauging under unstable conditions

Unique gauging methodology based on battery profile which is supported by chemical physics of composition in battery

Very Low
Power
Consumption

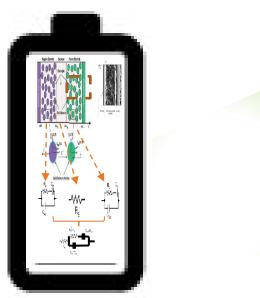
Extremely Low power consumption

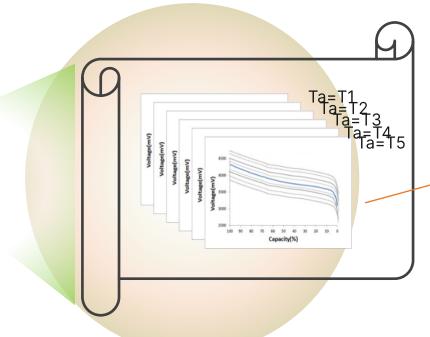
Extremely low operational power consumption with optimized interval using "Dual Clock Architecture"

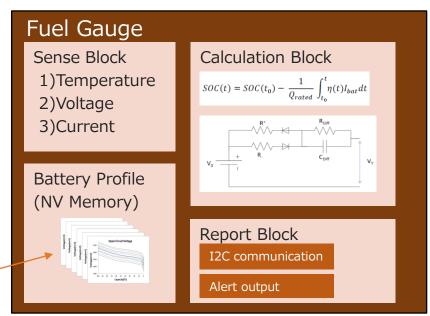
No-current Sense Resistor

Reduced BoM Count

No need for external current sensing resistor algorithm. Smaller footprint on PCB increases product designability and enhances cost benefits.

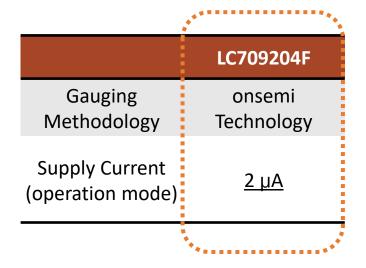

Accurate Gauging


onsemi solution uses:


- Battery profile consists of unique look-up tables with parameters based on actual measurement and battery chemistry
- Internal battery resistance to enable stable gauging accuracy under various conditions

onsemi battery gauging is robust against:

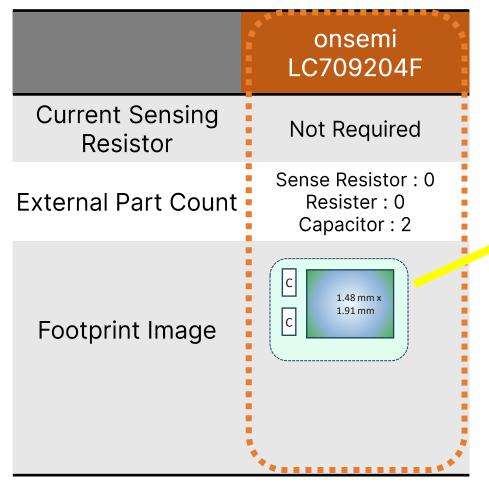
- Battery aging from charge/discharge cycles
- Temperature fluctuation
- Charging voltage changes

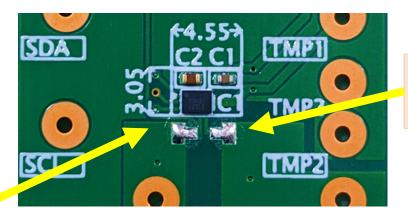

Battery Profile Table supports Several parameters

- -Charge current, -Discharge current
- -Temperature, -Voltage shift from OCV

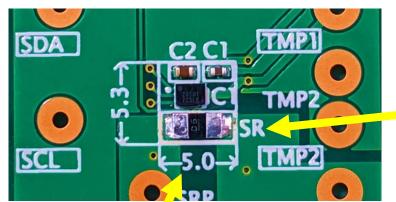
Extremely Low Power Consumption

Power Consumption


- LC709204F only consumes 2 μA of operating current, noticeably lower
- Power consumptions at operational mode is extremely low


Remaining Battery, when an end-product is stored in a warehouse for 30 days (calculated values) LC709204F 98.2%

(80 mAh Battery)



No-current Sense Resistor

No sense resistor

With sense resistor

Customer Benefits:

- No sense R becomes increasing important for wearables and small form factor applications.
- Its not just the sense R dimensions, the pcb footprint for the sense R is bigger than the sense R physical package dimensions. © onsemi 2022

Typical Current Sense Resister (5 m Ω , 1%):

PCB footprint: connection pattern

onsemi Battery Sensing base model LC709204F

LC709204F

The standard model with the low power consumption and the small size in the industry, for safety and flexible size design, supports extensive enhanced alert functions

External parts: 2pcs

Lower Power : 2uA

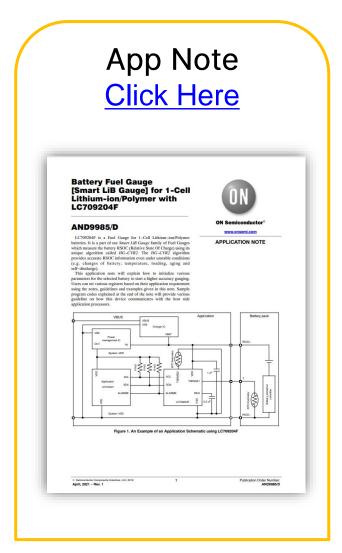
Enhanced battery monitor report

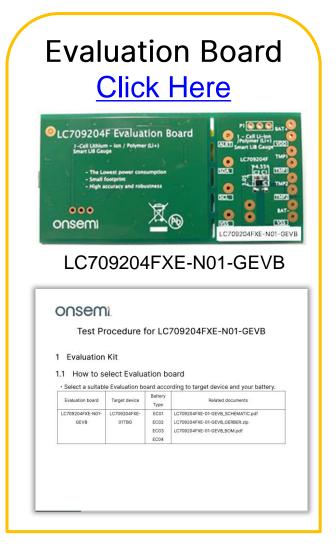
IC	LC709204F
Advanced	Rescaled RSOC
	Time to Empty
	Time to Full
Alarm	Ambient Temperature
	High/Low Voltage
	Low RSOC
	High/Low Temperature
Battery Lifetime	Estimated SOH
	Cycle Count
	Max/Min Cell Voltage
	Max/Min Cell Temperature
	Total Runtime
	Accumulated Temperature
	Accumulated RSOC

Key Take Away

onsemi Battery Sensing(Fuel Gauging) Solutions

Accurate Gauging
Robust Gauging under Unstable Battery Conditions


Extremely Power Consumption, Monitoring the Status of Operations


No-current Sense Resistor, Reduced BoM Count

Support and Collateral

Intelligent Technology. Better Future.

Follow Us @onsemi

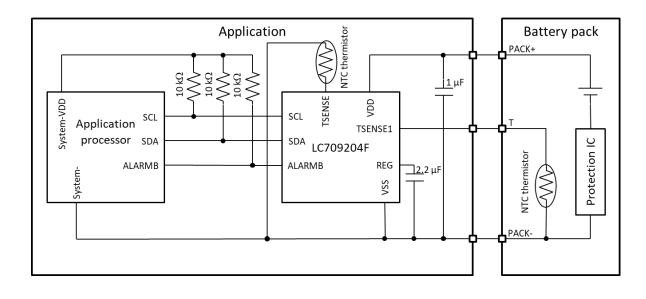
www.onsemi

Appendix

LC709204F Product Overview

Battery Fuel Gauge with Low-Power 2 µA Operation

Unique Features	Benefits
HG-CVR2: Unique gauging methodology based on battery's chemical composition	Highly accurate and robust RSOC gauging
2 μA ultra low operating current	Energy efficient
Battery lifetime report	Provides system safety
Multi NTC thermistor sensing inputs	Monitors system/battery temperature
One-chip sensing without sensing resistor	PCB footprint area


Other Features

- Target battery type: 1-Cell Lithium-ion/Polymer. Pouch and Prism, Cylinder type
- Battery capacity range: Up to 6,500 mAh x Parallel cell number
- Alarms for high and low voltage, current, temperature, RSOC to the host using dedicated output
- Auto empty adjustment to protect the system from voltage drop of aged battery
- The maximum and minimum condition records for failure analysis
- I²C Interface (supported up to 400 kHz)
- 32 bits non volatile memory to be usable for any usage

Markets & Applications

- Wearables
- Wireless headsets
- IoT devices
- Smartphones / PDA devices
- · Portable game players
- USB-related devices

Typical Application Schematic

Ordering & Packaging Information				
ONPN	Description	Package		
LC709204FXE-01TBG	Battery Fuel Gauge LSI for 1-Cell Lithium- ion/Polymer (Li+) with Low-Power 2 µA Operation	WLCSP12, 1.48x1.91x0.51		

onsemi Fuel Gauge Product

Model	LC709204FXE
Algorithm	HG-CVR2 *1
Package	WLCSP12
Size	1.48 mm x 1.91 mm x 0.51 mm
Pin Pitch	0.4 mm
Max Voltage	5.0 V
Accuracy	±2.0%
Operating Idd	2.0 μΑ
Rescaling	V
Alarm	5
Sense Temperature	2xNTC Thermistor , Host Reported
Basic Report *2	V
Advanced Report *3	V
Battery Lifetime Report *4	V
Current Report *5	Option *6
User ID	V
Battery Embedded/Removal	V
Embedded Battery Profile	5

Notes:

15

- *1: HG-CVR2 Increased look-up tables to increase the device gauging accuracy Improved sampling timing to reduce the overall power consumption
- *2: Basic Report RSOC, Cell Voltage, Cell Temperature
- *3: Advanced Report Rescaled RSOC, Time to Empty, Time to Full, Ambient Temperature
- *4: Battery Lifetime Report Cycle Count, SOH(State of Health), Total Run Time
- *5: Current Report Remaining Capacity, FCC, Average Current, Dynamic Current
- *6: Contact your onsemi FAE

Alarms and Battery Lifetime Reporting

- LC709204F sends an alert to a host via an alarm function with little or no delay, when battery operating conditions exceed the parameters set up by the customer
- A record of historical data and stresses applied to the battery are logged in the battery lifetime report

IC	LC709204F
Advanced Reports	 Rescaled RSOC Time to Empty Time to Full Ambient Temperature Battery Status
Alarm Conditions	 High/Low Voltage Low RSOC High/Low Temperature Over-Charge/Discharge Current *1
Battery Lifetime Reports	 SOH Cycle Count Max/Min Cell Voltage Max/Min Cell Temperature Total Runtime Accumulated Temperature Accumulated RSOC Ave/Dynamic Cell Current *1 Full Charge/Remaining Capacity *1

^{*1.} Optional. Please contact your onsemi FAE for details.

Thank you

